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Linear response theory applied to stochastic resonance in models of ensembles of oscillators
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We apply linear response theory to a parallel ensemble of stochastic resonators. We show that for a large
number of elements the system can be used to process broadband signals without frequency distortions. Both
conventional stochastic resonance and aperiodic stochastic resonance are studied.@S1063-651X~97!50407-7#

PACS number~s!: 05.40.1j
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The phenomenon of stochastic resonance~SR! @1# is a
bright example of the constructive role that noise might p
in the nonlinear world: the response of a wide class of n
linear systems to a weak periodic input signal can be o
mized by including a certain noise level. The practical s
nificance of this effect finds applications in a wide variety
physical and biological systems as has been underlined
series of meetings@2# and by an increasing number of pu
lications @3#.

Often, the input signal is a single frequency, howev
recently input signals with more complicated structure
came of interest. For example, SR for both quasiperiodic@4#
and narrow-band noisy signals has been considered@5,6#.
Recently aperiodic stochastic resonance~ASR! has been in-
troduced by Collinset al. @7# using the input-output cross
correlation function rather than the output signal-to-noise
tio ~SNR! as a measure.

On the other hand, it has been shown that SR can
significantly enhanced if, instead of a single stochastic re
nator, an array of coupled@8–11# or uncoupled@12# resona-
tors is taken. In the case of an uncoupled parallel array
resonators convergent on a summing center,stochastic reso-
nance without tuninghas been observed@13#. The character-
istic maximum in the SNR curve disappears as the sh
becomes broadened with an increasing number of eleme
Thus the collective response of such a summing networ
optimized for any arbitrary noise level larger than som
small value. Recently ASR and SR without tuning have be
discussed in terms of ‘‘stochastic linearization’’@14#.

Previous theoretical studies have shown that single
ment, single frequency, or conventional, SR can be corre
described in terms of the linear response theory~LRT! @5,15#
for weak signals that can be also noisy@16#. In the present
Rapid Communication we apply LRT to both ASR and
parallel array. In contrast to previous studies@7,13,14#,
where one single realization of the aperiodic input signal w
used, we assume a stationary stochastic process and
ensemble averages.

We start with ASR. Consider that a nonlinear stochas
system with coordinatex(t) has susceptibilityx(v,D),
wherev is the frequency andD the noise intensity. The
function x(v,D) contains all the information on the re
sponse of the system to a weak input signal, and its dep
dence onD should show a maximum indicating SR. As th
input of the system, we take a weak noisy signals(t), which
is a stationary Gaussian process. Let also boths(t) and
x(t) be zero valued.
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We aim to calculate cross-correlation measures betw
the input and the output of the system. An appropriate m
sure is the coherence function@17,10,18# G(v), obtained
from s(t) andx(t) for a given frequency:

G2~v!5
uGsx~v!u2

Gss~v!Gxx~v!
. ~1!

In Eq.~1!, Gsx(v) is the cross-spectral density,Gss(v) and
Gxx(v) are the spectral densities of the input and t
output, respectively. The covarianceC05^s,x& and the
correlation coefficientC15C0 /A^x2&^s2&, used previous-
ly @7,14#, can easily be obtained from the spectr
densities as C05*0

`ReGsx(v)dv and C1

5C0@*0
`Gss(v)dv*0

`Gxx(v)dv#21/2.
For a weak Gaussian signals(t) the spectral density at th

output and the input-output cross-spectrum are defined
cording to LRT as

Gxx~v!5Gxx
~0!~v!1ux~v!u2Gss~v!, ~2!

Gsx~v!5x~v!Gss~v!, ~3!

whereGxx
(0)(v) is the spectral density of the system in th

absence of the input signal. Substituting Eq.~2! into Eq. ~1!
we obtainG(v) as

G2~v!512
Gxx

~0!~v!

Gxx
~0!~v!1ux~v!u2Gss~v!

. ~4!

As a particular example, we consider here an overdam
symmetric double-well oscillator with white noise. The inp
signals(t) is a Gaussian colored noise with correlation tim
t51/g and standard deviationQ. The model is thus de-
scribed by the stochastic differential equation~SDE!:

ẋ5x2x31A2Dj~ t !1s~ t !, ~5!

where ^j(0)j(t)&5d(t) and Gss(v)5gQ/(g21v2). We
use here a simple but reasonable single exponent approx
tion. Accounting for only the intrawell motion@5#, the un-
perturbed spectral densityGxx

(0)(v) and the susceptibility are

Gxx
~0!~v!5

^x0
2&lm

lm
2 1v2 , ~6!
R9 © 1997 The American Physical Society
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x~v!5
1

D

lm^x0
2&

lm
2 1v2 ~lm2 iv!. ~7!

In Eq. ~6!, lm5(A2/p)exp(21/4D) is the smallest nonvan
ishing eigenvalue of the corresponding Fokker-Planck op
tor @5# and refers to the Kramers rate@19#, and ^x0

2& is the
stationary value of the second moment, both for the unp
turbed system. Finally for the coherence function, we obt

G2~v!512S 11
lm^x0

2&
D2

Qg

~g21v2!
D 21

. ~8!

The dependence ofG on the frequency and noise intensity
presented in Fig. 1, where the phenomenon of ASR can
clearly seen: for any frequency the coherence function p
sesses a maximum at an optimal noise level. The maxim
is most pronounced at low frequencies, since the signa
low frequency. The correlation coefficient,

C15F S lm

g1lm
D S 12

D2~g1lm!

D2~g1lm!1Qlm^x0
2& D G

1/2

, ~9!

is shown in Fig. 2. We note very reasonable corresponde
between theoretical and numerical results. Therefore
weak Gaussian signals ASR can be described in term
LRT in the same way as conventional SR.

Let us now turn to the ensemble ofN uncoupled SR ele-
ments as considered in Refs.@12,13#. Each element is char
acterized by its state variablexk(t) and susceptibility
xk(v) and has its own statistically independent intern
noise with intensityD. The inputs of the elements are su
jected to the same weak signals(t), and their outputs are
summed:

xM~ t !5
1

N (
k51

N

xk~ t !. ~10!

The spectral density of the summed outputGMM(v) is

GMM~v!5
1

N2F (k51

N

Gkk~v!1 (
k51

N

(
m51
k5” m

N

Gkm~v!G , ~11!

FIG. 1. The coherence function, Eq.~8!, for ASR given by Eq.
~5! with g50.05 andQ51023.
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whereGkk is the spectral density ofkth element, andGkm is
the cross-spectral density of thekth andmth elements. Note
that in the absence of the input signal the cross-spect
disappears from Eq.~11!, so that all cross correlations in th
ensemble are due tos(t) only. In the approximation of LRT
the spectral density of thekth element is

Gkk~v!5Gkk
~0!1uxk~v!u2Gss~v!, ~12!

whereGkk
(0)(v) is the spectral density of the unperturbe

kth element. For the cross spectra we obtain@17#

Gkm~v!5xk* ~v!xm~v!Gss~v!, ~13!

where* means complex conjugate. For the cross spectr
GsM(v) betweens(t) and the summed outputxM(t) we ob-
tain

GsM~v!5
Gss~v!

N (
k51

N

xk~v!. ~14!

Now we are able to calculate all cross-correlation measu
In order to show explicitly the behavior of the ensemble w
an increase of the number of elements, we consider the
plest case ofidentical elementswith x(v)[xk(v) and
Gxx
(0)(v)[Gkk

(0)(v), for which we obtain

GMM~v!5
1

N
Gxx

~0!~v!1ux~v!u2Gss~v!, ~15!

GsM~v!5x~v!Gss~v!. ~16!

From Eq.~15! we can immediately understand the behav
of the summed output with increases ofN. In the limit of
largeN, the first term in Eq.~15!, which refers to internal
fluctuations within the elements, disappears, and the wh
ensemble behaves as a linear system with the transfer f
tion x(v). For the coherence function between the input a
the summed output we get

FIG. 2. The correlation coefficient as a function of noise inte
sity for two values of the signal’s correlation timeg21, and for
Q51023. Results of the numerical simulations are shown by
symbols while theoretical curves, Eq.~9!, are shown by solid lines
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G2~v!5
ux~v!u2Gss~v!

Gxx
~0!~v!/N1ux~v!u2Gss~v!

. ~17!

For largeN the coherence function tends to 1, i.e., to t
most coherent state, as must be always true for an equiva
linear system. Moreover, in Eq.~17!, only Gxx

(0)(v) and
x(v) depend on the noise intensity. Clearly, asN becomes
large, the noise dependence of the numerator-to-denomin
ratio nearly cancel. This explains the broadening of the ty
cal SR characteristic and appearance SR without tuning

Let us now consider conventional SR, wheres(t) is the
sum of a weak Gaussian noisen(t) and a weak periodic
functionAsin(Vt1f). We will average over a random phas
f in order to ensure that the process is stationary@5#. The
appropriate measure in this case is the ratio of the SNR a
input to the SNR at the output. The SNR at the input
simply SNRin5A2/Gnn(V), whereGnn(v) is the spectral
density of the noisy part of the signal. The output SNR c
be easily obtained from Eq.~15! yielding for the ratio

h5
SNRout
SNRin

512
Gxx

~0!~V!

Gxx
~0!~V!1Nux~V!u2Gnn~V!

. ~18!

This ratio is less than 1@16#, unlessN tends to infinity. Thus
for largeN the dependence of the SNR at the summed ou
on the noise intensity disappears in the same way as
ASR. But it might be useful for experimentalists to estima
the number of elementsN in the ensemble that are needed
obtain a given value ofh. From Eq.~18! we obtain

N5
Gxx

~0!~V!

ux~V!u2Gnn~V!

h

12h
, ~19!

which is closely akin to Eq.~4! in Ref. @13#. We again note
that in the limit N→`, SNRout→SNRin as it should for a
linear system.

As is well known, SR is often more pronounced for low
frequency signals. This feature is determined by the sus

FIG. 3. The correlation coefficient as a function of noise inte
sity for the ensemble of overdamped bistable oscillators for dif
ent numbers of elements forg50.05,Q51023. Theoretical curves
from Eq.~20! are shown by solid lines. The limiting value, Eq.~21!,
is shown by the dashed line.
nt

tor
i-

he
s

n

ut
or

p-

tibility x(v). In practice it means that the low-frequenc
domain of the signal will be processed better than the hi
frequency one and as a result we will get frequency dis
tions at the output. In this view Eq.~17! is of practical im-
portance, because for largeN the frequency dependenc
disappears in the same way as the dependence on the
intensity. Therefore a parallel array of SR elements can
used for processing of broadband signals.

Now we apply the general theory described above to
particular example of an ensemble of identical bistable no
elements. Each element is described by the SDE Eq.~5!. For
the correlation coefficientC1, we obtain

C15C1
`F12

D2~g1lm!

D2~g1lm!1NQlm^x0
2&G

1/2

, ~20!

C1
`5S lm

g1lm
D 1/2. ~21!

In the limit N→`, C1 tends to its limiting valueC1
` , which

still, however, depends on the noise intensity. But this
pendence vanishes for slow input signals,g!lm . The re-
sults are shown in Fig. 3. We again note good corresp
dence between theory and numerical simulations.

The results for conventional SR are summarized in Fig
The input signal in this case is the sum of a periodic funct
and a random noise:s(t)5Asin(Vt1f)1n(t), wheren(t) is
a Gaussian stationary stochastic process with spectral de
Gnn(v)5Qg/(v21g2). The input-output SNR ratio,h,
from Eq. ~18!, is shown as a function of both noise intensi
and number of elements. The contour lines show that
dependenceN(D) for a given value of the ratioh possesses
a minimum that determines the lowest possible number
elements necessary to obtain a given value ofh.

In conclusion, we have presented a general theory ba
on LRT for ensembles of stochastic resonators. This the
applies to both aperiodic and conventional SR. We ha
shown that the collective response to a weak input signa
an ensemble of stochastic resonators, acting in paralle
closely akin to that of an equivalent linear system, only
the limit of large number of elements. The theory also p
dicts that parallel arrays of SR elements can be used to
cess broadband signals without distortions at the output.

-
-

FIG. 4. The ratio of SNRs,h(N,D), Eq. ~18!, for the ensemble
of overdamped bistable oscillators;Q51023, g51.0, A50.1, V
50.1. The contour lines for indicated values ofh are given by Eq.
~19!.
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underline that the presented theory can be applied to a w
range of systems provided that the susceptibility of an e
ment of the system is known.
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