RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Linear response theory applied to stochastic resonance in models of ensembles of oscillators
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We apply linear response theory to a parallel ensemble of stochastic resonators. We show that for a large
number of elements the system can be used to process broadband signals without frequency distortions. Both
conventional stochastic resonance and aperiodic stochastic resonance are [$10ié8-651X97)50407-1

PACS numbd(s): 05.40:+j

The phenomenon of stochastic resonafg®) [1] is a We aim to calculate cross-correlation measures between
bright example of the constructive role that noise might playthe input and the output of the system. An appropriate mea-
in the nonlinear world: the response of a wide class of nonsure is the coherence functigi7,10,18 I'(w), obtained

linear systems to a weak periodic input signal can be optifrom s(t) andx(t) for a given frequency:
mized by including a certain noise level. The practical sig-

nificance of this effect finds applications in a wide variety of 5 |Gy @)]?

physical and biological systems as has been underlined by a I'(w)= God®)Go(@)’ (1)
series of meetingf2] and by an increasing number of pub- s XX

lications([3]. In Eq(1), Gs,(w) is the cross-spectral densit@.{w) and

Often, the input signal is a single frequency, however,s (v are the spectral densities of the input and the
recently input signals with more complicated structure be-

came of interest. For example, SR for both quasiperipglic output, .respectl\_/e_ly. The covariandgy=(s,x) and . the

and narrow-band noisy signals has been considgsegl.  correlation coefficientC,=Co/(x%)(s), used previous-

Recently aperiodic stochastic resona&R) has been in- 1Y [7,14, can easily bf obtained from the spectral

troduced by Collinset al. [7] using the input-output cross- densities as  Cop=[ ReGsy(w)dw and C,

correlation function rather than the output signal-to-noise ra=Co[ [ Gss@)dw [{Gx(w)dw] 2

tio (SNR) as a measure. For a weak Gaussian sigrs(lt) the spectral density at the
On the other hand, it has been shown that SR can beutput and the input-output cross-spectrum are defined ac-

significantly enhanced if, instead of a single stochastic resoeording to LRT as

nator, an array of couple@—11] or uncoupled12] resona-

tors is taken. In the case of an uncoupled parallel array of Gy @) =G () +|x(0)|?Ged w), (2)
resonators convergent on a summing cergtrchastic reso-
nance without tunindnas been observegd3]. The character- Gey(®)=x(0)Ged ®), 3

istic maximum in the SNR curve disappears as the shape

becomes broadened with an increasing number of elementghere Gi(f()(w) is the spectral density of the system in the

Thus the collective response of such a summing network igbsence of the input signal. Substituting E2).into Eq. (1)

optimized for any arbitrary noise level larger than somewe obtainI'(w) as

small value. Recently ASR and SR without tuning have been

discussed in terms of “stochastic linearizatiopl’4]. GE&)(w)
Previous theoretical studies have shown that single ele- I(w)=1- GO o+ G -

ment, single frequency, or conventional, SR can be correctly (@) F | xX(@)|*Gsd )

described in terms of the linear response thébRT) [5,15]

for weak signals that can be also noi$6]. In the present

(4)

As a particular example, we consider here an overdamped

. S symmetric double-well oscillator with white noise. The input
Rapid Communication we apply LRT to both ASR and asignals(t) is a Gaussian colored noise with correlation time

parallel array. In contrast to previous studifs13,14, 7=1/y and standard deviatio®. The model is thus de-

where one single reahzatl_on of the aperlo_dlc input signal Wasicribed by the stochastic differential equatiGDE):
used, we assume a stationary stochastic process and make

ensemble averages. RN S o=
We start with ASR. Consider that a nonlinear stochastic X=X=XT+ V2D E() +s(b), ®)

system with coordinatex(t) has susceptibilityx(w,D), where (£(0)£(t))=5(t) and GoJ(w)= 2, o
. L . = s w)=yQ/(y "+ w). We
where w is the frequency and the noise intensity. The use here a simple but reasonable single exponent approxima-

function y(w,D) contains all the information on the re- o, “accqunting for only the intrawell motiofs], the un-
sponse of the system to a weak input signal, and its depen- - (0) -
dence orD should show a maximum indicating SR. As the perturbed spectral densi, () and the susceptibility are

input of the system, we take a weak noisy sigs(@), which <X2>)\
is a stationary Gaussian processet also boths(t) and G(X?<>(a))= 20 ”; (6)
x(t) be zero valued. At o
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FIG. 1. The coherence function, E@®), for ASR given by Eq. 0.00 ‘ . ‘ .
(5) with y=0.05 andQ=10"3. ~0.00 0.10 0.20 0.30 0.40
D
2
(w)= i _)\m<Xo> Am—i®) @ FIG. 2. The correlation coefficient as a function of noise inten-
X D )\r2n+ w2m ' sity for two values of the signal’s correlation timg !, and for

Q=103. Results of the numerical simulations are shown by the

In Eq. (6), A= (\/Elq-r) exp(~1/4D) is the smallest nonvan- symbols while theoretical curves, E@®), are shown by solid lines.

ishing eigenvalue of the corresponding Fokker-Planck opera- i ) )
tor [5] and refers to the Kramers raf&9], and(x3) is the whereGyy is the spectral density dfth element, ands,, is

stationary value of the second moment, both for the unpertN€ cross-spectral density of théh andmth elements. Note

turbed system. Finally for the coherence function, we obtairf1@t in the absence of the input signal the cross-spectrum
disappears from Ed11), so that all cross correlations in the

ensemble are due &(t) only. In the approximation of LRT

Y 2 -1
X0 Qy (8)  the spectral density of thieth element is

20V 1—
r (w) 1 1+ D2 (’)/2+(l)2)

N Gi(@) =Gl + [ xk(@)[*Gsd ), (12
The dependence d@f on the frequency and noise intensity is
presented in Fig. 1, where the phenomenon of ASR can b@here G{Y(w) is the spectral density of the unperturbed
clearly seen: for any frequency the coherence function poskth element. For the cross spectra we obfdir
sesses a maximum at an optimal noise level. The maximum
is most pronounced at low frequencies, since the signal is Gim(®)= X (0) xm(®)Gsd ®), (13
low frequency. The correlation coefficient,

where* means complex conjugate. For the cross spectrum

c m ( D2(y+\p) ) vz © G.u(w) betweens(t) and the summed outpu,(t) we ob-
Yy A D(y+\m)+QN\m(X5) /| tain
Ged @) <
is shown in Fig. 2 We note very _reasonable correspondence G )= SN E Yi(@). (14)
between theoretical and numerical results. Therefore for k=1
weak Gaussian signals ASR can be described in terms of _
LRT in the same way as conventional SR. Now we are able to calculate all cross-correlation measures.

Let us now turn to the ensemble Nfuncoupled SR ele- In order to show explicitly the behavior of the ensemble with
ments as Considered in Re[gzj_a Each e|ement is Char- an increase Of the numbel’ Of elements, we Consider the Sim'

acterized by its state variable(t) and susceptibility pl?os)t case (é))fidentical elementswith x(w)=x(») and
xx(w) and has its own statistically independent internalGxx (@)=Gjy/(w), for which we obtain

noise with intensityD. The inputs of the elements are sub-

Jseucr;erietdo: the same weak signg(t), and their outputs are Gy (@)= NG§<3>(w)+|X(w)|ZGss(w): (15)
1 Gsm(w) = x(@)Gsd ). (16)
xm(t)= 15 2 x(b). (10) , _ ,
k=1 From Eq.(15) we can immediately understand the behavior
of the summed output with increases Mf In the limit of
The spectral density of the summed out@}y(w) is large N, the first term in Eq(15), which refers to internal

fluctuations within the elements, disappears, and the whole
1[ X ensemble behaves as a linear system with the transfer func-
Cum(w) =2 gl Gkk(w)+kz 2 Gun(®) |, (1D tion x(w). For the coherence function between the input and

=1m=1
kem the summed output we get

N N
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‘ . ‘ ‘ FIG. 4. The ratio of SNRsy(N,D), Eq. (18), for the ensemble
'%.oo 0.10 0.20 0.30 0.40 of overdamped bistable oscillatorg=10"3, y=1.0, A=0.1, Q
D =0.1. The contour lines for indicated valuesspfare given by Eq.

(19).
FIG. 3. The correlation coefficient as a function of noise inten-

sity for the ensemble of overdamped bistael?le osciIIaFors for diﬁer'tibility ¥(w). In practice it means that the low-frequency
ent numbers of elements for=0.05,Q=10"". Theoretical curves  q4main of the signal will be processed better than the high-
from Eq.(20) are shown by solid lines. The limiting value, B81),  frequency one and as a result we will get frequency distor-
is shown by the dashed line. tions at the output. In this view Eq17) is of practical im-
| 2G portance, because for largé the frequency dependence
'2()= X(0)|*Gsd o) _ (17  disappears in the same way as the dependence on the noise
Gﬁ(?()(w)/N+|X(w)|ZGSS(w) intensity. Therefore a parallel array of SR elements can be
used for processing of broadband signals.

For largeN the coherence function tends to 1, i.e., to the Now we apply the general theory described above to the
most coherent state, as must be always true for an equivalepgrticular example of an ensemble of identical bistable noisy
linear system. Moreover, in Eq17), only G{9(w) and  elements. Each element is described by the SDEEqFor
x(w) depend on the noise intensity. Clearly, Msbecomes the correlation coefficient,, we obtain
large, the noise dependence of the numerator-to-denominator

ratio nearly cancel. This explains the broadening of the typi- C.—C* 1 D?(y+\m) v (20)
cal SR characteristic and appearance SR without tuning. 1 1 D2(y+ Am)+ NQ>\m<X§> ’
Let us now consider conventional SR, whexg) is the
sum of a weak Gaussian noisgt) and a weak periodic . Am |2
function Asin(Qt+ ¢). We will average over a random phase Cy :( . (21

¢ in order to ensure that the process is statiorj&fy The

appropriate measure in this case is the ratio of the SNR at th@ the limit N—c, C, tends to its limiting valueC] , which
input to the SNR at the output. The SNR at the input isstill, however, depends on the noise intensity. But this de-
simply SNR,=A?%/G,,(), where G,,(») is the spectral pendence vanishes for slow input signajss\ . The re-
density of the noisy part of the signal. The output SNR carsults are shown in Fig. 3. We again note good correspon-

be easily obtained from Eq15) yielding for the ratio dence between theory and numerical simulations.
) The results for conventional SR are summarized in Fig. 4.
_ SNRyut Gyx () The input signal in this case is the sum of a periodic function

77 SNR, =1 GO(Q)+N|x(Q)]?Gnn(Q) 18 and a random noisa(t) = Asin(Qt+ ¢)-+n(t), wheren(t) is

a Gaussian stationary stochastic process with spectral density
This ratio is less than [16], unlessN tends to infinity. Thus  G,,(w)=Qy/(w?+ ¥?). The input-output SNR ratio,

for largeN the dependence of the SNR at the summed outpuirom Eqg. (18), is shown as a function of both noise intensity
on the noise intensity disappears in the same way as faind number of elements. The contour lines show that the
ASR. But it might be useful for experimentalists to estimatedependenc&l(D) for a given value of the ratiay possesses

the number of elements in the ensemble that are needed toa minimum that determines the lowest possible number of

obtain a given value of;. From Eq.(18) we obtain elements necessary to obtain a given valueyof
© In conclusion, we have presented a general theory based
Gxx (1) ] on LRT for ensembles of stochastic resonators. This theory

(19 applies to both aperiodic and conventional SR. We have

shown that the collective response to a weak input signal of

which is closely akin to Eq4) in Ref.[13]. We again note an ensemble of stochastic resonators, acting in parallel, is
that in the limitN—«, SNR,—~SNR, as it should for a closely akin to that of an equivalent linear system, only in
linear system. the limit of large number of elements. The theory also pre-

As is well known, SR is often more pronounced for low- dicts that parallel arrays of SR elements can be used to pro-

frequency signals. This feature is determined by the suscemess broadband signals without distortions at the output. We

N PG ) 1— 7'
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